Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

## Isopropyl 2-methyl-4-(3-nitrophenyl)-5,7-dioxo-4,5,6,7-tetrahydro-1H-pyrrolo-[3,4-b]pyridine-3-carboxylate

The crystal structure of the title compound, $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{6}$, is formed by single molecules linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into planar sheets. The dihedral angle between the mean planes of the pyridine and substituted phenyl rings is $84.2(1)^{\circ}$. The 3-nitro substituent on the phenyl ring is rotated from coplanarity with the ring by only $3.7(2)^{\circ}$.

## Comment

The molecules of the title compound, (I), are linked by two $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The imino atom N 1 (Fig. 1) acts as a donor, via H 1 , to nitro atom O 41 of the neighbouring molecule at $(x, y, z-1)[\mathrm{H} 1 \cdots \mathrm{O} 41=2.11 \AA$ and $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 41$ $\left.=173^{\circ}\right]$. The other imino atom N6 acts as donor, via H6, to carbonyl atom O31 of the adjacent molecule at $(x, y-1, z)$ [ $\mathrm{H} 6 \cdots \mathrm{O} 31=1.89 \AA$ and $\mathrm{N} 6-\mathrm{H} 6 \cdots \mathrm{O} 31=173^{\circ}$ ]. Each molecule is hydrogen bonded to four others, forming twodimensional sheets. The sheets are nearly planar and lie parallel to (011). Hydrogen bonds of this kind are similar to those observed in another pyrrolopyridine derivative (Low et al., 2001) and in 1,4-dihydropyridine (Kooijman et al., 2002). There are aromatic $\pi-\pi$ stacking interactions between phenyl rings in adjacent sheets. The molecule at $(x, y, z)$ forms a $\pi-\pi$ stacking interaction with the molecule at $(1-x,-y, 2-z)$, which forms part of an adjacent sheet. The shortest intermolecular distance of 3.155 (4) $\AA$ is for C43 . . C45 ( $1-x,-y$, $2-z$ ). Propagation of this $\pi-\pi$ interaction by the space group symmetry serves to link the sheets into a single three-dimensional framework. The pyrrolopyridine rings of (I) are essentially planar, except for the ester group, which is significantly twisted out of the ring planes (Fig. 1). The ester group has cis-cis geometry with respect to the ring double bonds and is rotated slightly out of the pyridine plane, with a C2-C3$\mathrm{C} 31-\mathrm{O} 32$ torsion angle of $-172.2(3)^{\circ}$.

(I)

## Experimental

Full details of the synthetic procedure have been published by Chudik et al. (2000). Yellow prismatic single crystals were prepared by recrystallization from ethanol.

Received 16 September 2003 Accepted 17 September 2003 Online 30 September 2003
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Viktor Vrábel, ${ }^{\text {a }}$ *
Štefan Marchalín ${ }^{b}$ and Jozef Kožišek ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Analytical Chemistry, Faculty of Chemical Technology, Slovak Technical University, Radlinskeho 9, Bratislava, Slovak Republic 81237, ${ }^{\mathbf{b}}$ Department of Organic Chemistry, Faculty of Chemical Technology, Slovak Technical University, Radlinskeho 9, Bratislava, Slovak Republic 81237, and
${ }^{\text {c }}$ Department of Physical Chemistry, Faculty of Chemical Technology, Slovak Technical University, Radlinskeho 9, Bratislava, Slovak Republic 81237

Correspondence e-mail: vrabel@cvt.stuba.sk

## Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
$R$ factor $=0.060$
$w R$ factor $=0.083$
Data-to-parameter ratio $=16.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Crystal data

| $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{6}$ | $Z=2$ |
| :--- | :--- |
| $M_{r}=371.35$ | $D_{x}=1.451 \mathrm{Mg} \mathrm{m}^{-3}$ |
| Triclinic, $P \overline{1}$ | Mo K $\alpha$ radiation |
| $a=8.555(3) \AA$ | Cell parameters from 25 |
| $b=9.445(2) \AA$ | reflections |
| $c=11.322(4) \AA$ | $\theta=6.8-19.3^{\circ}$ |
| $\alpha=83.76(2)^{\circ}$ | $\mu=0.11 \mathrm{~mm}^{-1}$ |
| $\beta=72.52(3)$ | $T=293(2) \mathrm{K}$ |
| $\gamma=77.18(2)^{\circ}$ | ${ }^{\circ}$ |
| $V=850.0(5) \AA^{3}$ | Prism, yellow |
| Data collection | $0.4 \times 0.3 \times 0.3 \mathrm{~mm}$ |
| Syntex $P_{1}$ diffractometer |  |
| $\theta-2 \theta$ scans | $h=0 \rightarrow 11$ |
| Absorption correction: none | $k=-12 \rightarrow 12$ |
| 4128 measured reflections | $l=-13 \rightarrow 14$ |
| 4128 independent reflections | 2 standard reflections |
| 1439 reflections with $I>2 \sigma(I)$ | frequency: 100 min |
| $\theta_{\text {max }}=28.0^{\circ}$ | intensity decay: none |

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.060$
$w R\left(F^{2}\right)=0.083$
$S=0.88$
4128 reflections
248 parameters
H-atom parameters constrained


Figure 1
A view of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the $50 \%$ probability level.

SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

This work was supported by the Grant Agency of the Slovak Republic (grant No. 1/9249/02 and 1/9255/02).

## References

Chudik, M., Marchalin, S̆., Daich, A. \& Decroix, B. (2000). Res. Adv. Synth. Org. Chem. pp. 1-7.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kooijman, H., Spek, A. L., Sobolev, A., Jongejan, H. \& Franssen, M. C. R. (2002). Acta Cryst. E58, o532-o534.

Low, J. N., Cobo, J., Garcia, C., Melguizo, M., Nogueras, M., Sánchez, A. \& Glidewell, C. (2001). Acta Cryst. C57, 597-599.
Pavelčík, F. (1987). XP21. Comenius University, Bratislava, Slovakia.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Syntex (1973). P2 Diffractometer Control Software. Syntex Analytical Instruments, Cupertino, California, USA.

